
User Interface Internationalization

COE UIS v4.1 September 2002 17-1

17. User Interface Internationalization

17.1 Operating With Non-US Languages

Internationalization is the process of generalizing software so it can handle multiple
languages (i.e., locales) and cultural conventions without the need for re-design or re-
compilation. If an application designed for a US audience will be used in combined or
coalition warfare operations, it needs to provide a user interface that matches users’
expectations, interacts with users in their native language, and displays data in a manner
that is consistent with users’ cultural conventions. The guidelines in this section are
provided to assist developers with a requirement to provide internationalized software
and are not considered in determining COE style compliance.

17.1.1 Character Rendering

Languages can be categorized in terms of the characters or symbols in which they are
written. To facilitate computer processing, a character set is defined for each language to
contain its written letters, numbers, and punctuation marks, with each character in the set
represented by a binary value. Most European languages, including English, are based on
the Roman (or Latin) alphabet. Because these languages contain fewer than 200 basic
characters (i.e., the 26 letters in the alphabet, with upper case, lower case, and accented
variations), their character sets can be encoded in a single-byte. ASCII (American
Standard Code for Information Interchange) is the most commonly used single-byte code
set for representing English-language text for an American user base. However, because
ASCII encodes a limited number of characters, it is insufficient for representing text in
languages other than American English.

While most European languages are based on the Roman alphabet, many of them contain
extended characters (i.e., ones that do not exist in English and are not available in ASCII)
in their character sets. These characters include accented vowels such as é and ê;
characters such as the French ç, the Spanish ñ, and the German ß and ü; and combined
characters such as æ. In addition, some European languages may not use the entire
Roman alphabet; Italian, for example, lacks the letter k. Despite these variations, all text
in Roman-based languages is written from left to right, with each new character appended
to the right of the previous character. Furthermore, the appearance of a character and its
order within a character sequence do not change as new characters are entered.

While languages with fewer than 200 characters can be encoded in a single byte, complex
languages such as Chinese, Japanese, and Korean contain several thousand unique
ideographic symbols from which words are composed. Encoding such a large character
set requires two (or more) bytes per character rather than one. Unicode provides the
capability to represent multi-byte character sets and is the preferred approach for
encoding the alphabets, ideograph sets, and symbols for all languages in the world. In
multi-byte languages, there may be no “natural order” to characters vis-à-vis sorting, and
no concept of or distinction between upper-case and lower-case forms. Because

User Interface Internationalization

17-2 September 2002 COE UIS v4.1

characters are composed of many strokes, text in these languages may require more space
to display, and text entry may be a more complex process than in single-byte languages

In most Roman-based languages, each character is rendered as a separate symbol of fixed
shape, and characters are written in the approximate order in which they are pronounced.
In other languages, however, the way in which characters are rendered graphically
depends on their linguistic context. In Arabic, for example, a character may be displayed
in several different forms, depending on whether it is displayed alone or as the first,
middle, or last character in a word. In contextual languages, the characters that make up
a symbol may be entered in several different orders, and entering a new symbol may
change or even eliminate a previously entered symbol. As a result, complex algorithms
may be needed to manage text line length (e.g., line breaks, justification), support editing
individual characters within a symbol, and provide search and sort features that can
recognize multiple encodings of the same symbol.

Most languages are unidirectional; i.e., lines of text are presented uniformly from left to
right or from top to bottom. Although Asian languages such as Chinese, Japanese, and
Korean may present horizontal and vertical text on the same page, they are considered to
be unidirectional because they do not mix directions in a single line of text. By contrast,
Arabic and Hebrew are bi-directional; text in these languages is written from right to left,
but numbers and foreign words in the same text are written from left to right. Because
the direction of text entry may change from one character to the next, appropriate text
handling procedures must be available in both right-to-left and left-to-right text.

17.1.2 Structural Rules for Character Handling

An application is able to accept and process all of the characters in the character set used
by the target language (i.e., the one to which the application is being converted). Because
languages differ in their structural rules for character handling, assumptions made when
processing a US character set may be inappropriate or inaccurate when applied to a
language with extended characters. In particular, a US application is likely to require
modification in order to correctly handle case conversion, ligatures, special characters,
and word and character boundaries in the target language.

Case conversion. In US software, case conversion is usually performed by adding or
subtracting a constant (i.e., 32) to or from the ASCII code for the character. In extended
character sets, case conversion is more complicated because there is no constant
difference between the numerical equivalents for upper- and lower-case representations
of characters. In addition, the distinction made in English between upper-case and lower-
case letters may be ambiguous or not exist at all in other languages. For example,
Chinese, Japanese, and Korean have no case distinction. In other languages, an accented
vowel in lower case may retain its accent in upper case, or the accent may disappear;
alternatively, a vowel in upper case may or may not contain an accent in lower case,
depending on the word and the language.

User Interface Internationalization

COE UIS v4.1 September 2002 17-3

Ligatures. Ligatures are sequences of characters that are treated as a unit; e.g., æ is a
combination of a and e. In some languages, ligatures can be entered as a single character
or as two separate characters. In the latter case, both letters would be capitalized in
words that are proper nouns; for example, Iceland is written as IJsland in Dutch.
Ligatures occur frequently in contextual languages such as Arabic. A US application
may require revision in order to handle any ligatures that occur in the target language.

Special characters. Because languages differ in the meaning assigned to special
characters, a US application that uses characters such as apostrophes as delimiters in a
text string and restricts their use to this function may require modification when
converted to certain European languages. For example, French and Italian replace the
terminal vowel in an article by an apostrophe when the following noun has an initial
vowel. In addition, some languages include special characters that may not be present in
English or use these characters in ways that differ from US usage. For example, Spanish
starts exclamations and questions with inverted exclamation mark and question mark
characters, while French includes a space between the last word of a sentence and a
concluding exclamation mark or question mark. Finally, diacritical marks (i.e., the signs
modifying the value or sound of characters) may have different meanings in different
languages. For example, certain diacritical marks specify the doubling of consonants in
Arabic but may indicate pitch in Vietnamese.

Word and character boundaries. A word consists of a string of characters preceded and
followed by delimiters. In a US application, these delimiters are usually blanks or spaces
but may also include the unused portion of the Roman character set. This latter approach
can be problematic when converting to a Roman-based language where these characters
need to be interpreted as part of the word and not considered as delimiters. In addition, in
some languages, a blank is acceptable as a numeric or phrase separator and so would not
be appropriate to use as a standard word delimiter.

User Interface Internationalization

17-4 September 2002 COE UIS v4.1

17.2 Text Translation

17.2.1 Creating Internationalized English Text

The process of translating the text displayed by a US application begins with the creation
of an “internationalized English” version of the text. All of the text is reviewed and, if
necessary, modified to ensure that it is easy to understand and use. Message text (e.g., in
message windows, online help) is presented in short, simple, declarative sentences
whenever possible. Excessive use of subordinate and coordinating phrases is avoided,
and ideas are expressed as concretely as possible. Ambiguous language, humor, jargon,
and cryptic messages are likely to cause difficulty for non-US audiences and so need to
be eliminated. Likewise, compound adjectives, strings of nouns, long sentences with
many ideas, and negative questions can be difficult to understand and so are not used. If
an application needs to explain a series of concepts, they are presented in the form of a
list, rather than in a text string separated by commas.

The content of each window in an application is checked for US-specific language prior
to translation to minimize the likelihood of misinterpretation by the target audience. The
goal is to use only those terms that are employed in the same way throughout the English-
speaking world. The use of acronyms and abbreviations is limited since many are not
recognized internationally and may have different meaning, depending on where they are
used. Similarly, when large numbers are presented, they are written as numerals; for
example, the term “billion” means one thousand million in the US but one million million
in some European countries. To minimize confusion, the names of months are written
out when they appear as part of a date. For example, 06/10/94 can be interpreted as June
10 or October 6, depending on the user’s cultural background.

An application avoids presenting examples that may be uniquely American. A generic
term is used, rather than what something is called in the US. For example, “stock
exchange index” is an international term while “the Dow” is specifically American and
“the FTSE 100” is specifically British. The messages in an application are reviewed to
determine if they may be interpreted by the target audience in ways other than intended.
For example, “as soon as possible” means “immediately” in the US but “when
convenient” in other countries. Terms such as “left hand” can be offensive in some
cultures and need to be replaced with “on the left” or “left side.”

17.2.2 Translating Text and Messages

Once an internationalized English version of the text displayed by an application is
created, it is translated into the target language. If appropriate, the translation is tailored
to the target language in the specific country or region that will be using the application.
Translated text contains proper technical terminology, especially when the terminology
may differ from conversational expression in the target language. Care is taken to
maintain distinctions in terminology that may be translated into the same text string in the
target language. For example, Cancel and Undo are normally translated as “annulez” in
French, even though these commands have different meanings in English. Similarly,

User Interface Internationalization

COE UIS v4.1 September 2002 17-5

spelling and grammar can differ among varieties of a single language and so need to be
adapted accordingly.

The same terminology is used in both the user interface and documentation for an
application. While the goal is to provide an accurate translation of all text into the target
language, it is acceptable to use US words in the text if the target language does not have
an adequate vocabulary of technical words or if the target audience is accustomed to
dealing with US terminology.

The accuracy of translated messages is verified since it is possible for the text of one
message to be the same as another, especially if the original messages were very similar
or were worded ambiguously. In addition, the meaningfulness of the translation is
checked against the situation that invoked it to ensure that the information being
conveyed in the original message is also conveyed in the translated version.

Translated text is reviewed to ensure that it makes grammatical sense. Some applications
construct messages from two or more substrings; for example, the name of the file being
deleted is inserted into the text string requesting the user to confirm deletion of the file.
While this approach may work in English, the linguistic characteristics (e.g., gender,
word order, special characters) of the resulting text can be awkward or inappropriate
when translated into the target language. When messages are constructed by nesting or
concatenating strings, the translated text that results is frequently meaningless or
syntactically impossible because words or phrases were not modified to fit the
grammatical rules of the target language.

Translated text uses the same character set and font as the rest of the application. Line
breaks and other format changes that may have been introduced with the translation are
checked for accuracy since US rules for hyphenation, punctuation, or capitalization are
likely to be different from those in the target language. If typographic variations such as
italics or boldface have been added as part of the translation, they are checked to ensure
that they are suitable in the target language. Language environments have evolved
unique rules defining how elements such as title lines, bulleted lists, and footnotes are
used to distinguish among levels of expression and to indicate how expressions are
related. The appearance of the translated text is adapted as needed to satisfy these rules.

17.2.3 Translating Documentation

The documentation for an internationalized application describes a representative sample
of the internationalized capabilities provided by the software. For example, an
explanation of how a sorting function works describes the kinds of sorts that are
performed, explains that the current locale affects the output, and provides several
examples that are representative of the locales supported.

Documentation text contains simplified English. Whenever possible, a single term is
selected to express a concept, and the use of synonyms is minimized. However, these
changes are made in such a way as to not reduce the precision of the text, create awkward

User Interface Internationalization

17-6 September 2002 COE UIS v4.1

phrasing (with an increase in overall text length), or produce unacceptably dull or boring
text. References (e.g., to sample users) and examples that are specific to one culture are
modified to be more international in focus. Any graphic symbols used in the
documentation are reviewed to minimize the extent to which they are culture-specific. If
necessary, a table is provided that lists the symbols and their interpretation. Finally,
documentation sections such as glossaries and indexes are expanded as needed to help
non-US readers find information. For example, glossaries define words that may have a
different technical meaning or not exist at all in the locales supported by an application.

Because the order of items in a sorted list usually changes following translation,
references to the position of items in the list are removed from documentation. Similarly,
when collation sequences are described, the results are not described as sorted
“alphabetically” since ideographic languages cannot be sorted alphabetically. Instead,
output is described as appearing “in sorted order as determined by the current locale.”
Other changes needed when internationalizing documentation include ensuring that terms
such as ASCII, text, byte, and character are used appropriately, describing any
assumptions made about date and time formats, replacing references to Yes and No (e.g.,
when describing actions in response to a message) with words that are appropriate to the
locale, and presenting the names of any individuals (e.g., sample users) in an order that is
correct for the specific culture. Finally, lengthy text explanations (e.g., in online help,
training materials, or other documentation) may need to be restructured or reorganized so
they follow the rules used by the target audience in organizing technical discussions or
sequences of explanations.

User Interface Internationalization

COE UIS v4.1 September 2002 17-7

17.3 Text Input Methods

17.3.1 Keyboards and Keyboard Input

A workstation usually has a keyboard layout tailored to the target language, and this
layout may be different from the one available on US workstations. Conventions
concerning the location of characters vary from language to language and sometimes
from country to country within the same language. For example, the German keyboard
reverses Z and Y from their positions on the US keyboard, and the Spanish keyboard has
a different layout in Spain than in Latin America. In addition, languages may add, omit,
or change the characters on a keyboard. For example, the British keyboard contains the
currency symbol for pound instead of #, and the Spanish keyboard has ñ where the US
keyboard has L. Non-US keyboards may mark each key with up to four different
characters. Users press modifier keys (e.g., SHIFT and/or ALT) in combination with the
key to enter the various characters marked on the key.

Because computers respond to specific physical keypresses regardless of what markings
appear on the keys, a different keyboard may not be required when converting a US
application into another language. A keyboard can be adapted by replacing the symbols
on each key, either with adhesive labels or new key covers. An application then maps the
individual keystrokes to the character set for the other language and displays the
appropriate characters. If this approach is used, the function keys on the keyboard need
to be mapped to the same actions as in the original software, and any messages generated
when these keys are pressed are displayed as they were prior to the conversion.

Languages where diacritical marks are used extensively (e.g., French) usually provide
keyboards that allow users to generate characters with these marks with a single
keystroke. However, because English has very few accents, users with a US keyboard
have to execute a combination of keystrokes in order to enter an extended character. An
application can use “dead” keys or a compose-based method to produce this type of
input.

With “dead” keys, the keystrokes consist of a “dead” (i.e., nonspacing) key, followed by
the character (e.g., a vowel) to be displayed with an accent. A different dead key is
assigned to each accent. When a dead key is pressed, a text input mode is invoked; the
symbol on the key is not displayed, and the text cursor does not move. The mode is
automatically disabled following the next keystroke; the appropriate dead key is pressed
each time an accented character is entered. If an invalid character (e.g., a consonant) is
entered, the character is displayed without an accent, and feedback (e.g., a beep) is
provided to indicate that the keystroke was invalid.

In a compose-based input method, when a predefined control key is pressed, a text input
mode is invoked that forms the next two keystrokes into a single character. When the
first character (e.g., a vowel) is typed, nothing is displayed by an application. When the
second character (e.g., the diacritic) is entered, the completed character is displayed, and
the input mode is automatically exited.

User Interface Internationalization

17-8 September 2002 COE UIS v4.1

17.3.2 Approaches to Text Entry

Text entry using pre-edit methods. In most languages, users perform text entry by typing
directly into a text box. However, if a keyboard cannot produce all of the symbols in a
target language, a pre-edit step may be needed. Users type characters from the keyboard,
usually into a pre-edit area, and then execute an action to convert the characters into other
symbols appropriate to the language. These symbols are then displayed in the text box.

When a pre-edit step is required, text entry can be performed on-the-spot, over-the-spot,
or off-the-spot. On-the-spot means that as users type, the characters appear directly in the
text box which can contain both text in unconverted form and converted symbols.
Although more difficult to implement, this approach is preferred because it is more
similar to text entry as normally performed by users. In over-the-spot, a separate pre-edit
area is provided for each text box; when users convert their input into final form, the
symbols are displayed in the appropriate text box. Off-the-spot also provides a separate
pre-edit area but uses the same area for multiple text boxes; in this case, when users
convert their input into final form, the symbols are displayed in the text box that has input
focus.

When text entry includes a pre-edit step, an application provides feedback concerning the
status of the input after users enter text in the pre-edit area and then execute an action to
convert the input into final form. If insufficient information is available to perform the
conversion, an application can prompt users to enter more pre-edit text, present them with
a list of choices from which to select, or indicate that the conversion has failed. If an on-
the-spot approach is implemented, the text box provides a visual distinction (e.g., a
different text font or color) between original input and converted text so users can easily
distinguish between the two. If the pre-edit area is provided in a separate dialog window,
the window is modeless so users are not restricted to only performing text entry.

Text entry in languages with large character sets. Several options are available to support
keyboard input in languages that have large character sets. Whatever method is selected
must be able to accommodate context-specific variations within the language as users
perform text entry. With each keystroke, converted text changes as needed in order to
create a new compound character or add a mark to a previous character.

With the first option, the component elements of each character are marked on the
keyboard. As users press individual keys, the elements are displayed. When a character
is complete, it is displayed in place of its components. This method has been used to
perform text entry in Chinese and Korean.

With the second option, users enter each character phonetically, and the phonetic form is
automatically translated into the correct character. When more than one character has the
same pronunciation, users are presented with a list of phonetically similar characters from
which to choose. For example, users enter a root or radical character from the keyboard,
then select additional strokes to complete the character from a set displayed by the

User Interface Internationalization

COE UIS v4.1 September 2002 17-9

application. This method has been used to convert Roman characters to Chinese
ideographs, and Hiragana and Katakana characters to Japanese Kanji.

With the third option, users type the decimal or hexadecimal encoded value for a
character or select the value from a list. If the value matches an entry in the code set, the
corresponding character is displayed by the application.

Text entry in mixed character sets. Users may need to perform text entry in more than
one character set (e.g., English and Korean) or in multiple locale-specific character sets
(e.g., Kanji and Katakana). This flexibility can be provided by defining text input modes
in each character set, along with a special keyboard character that allows users to toggle
between the character sets as desired. Users with a keyboard where two character sets are
marked on the keys select one of the modes to begin text entry. All of the typed text is
interpreted in this character set. When the special character is encountered, the text mode
toggles to the other character set and all subsequent input is interpreted in this set.

Text entry in bi-directional languages. Because bi-directional languages write text in
both right-to-left and left-to-right directions, text entry may be performed in either
direction, depending on the contents of a text box, and may require input in both
directions within a single box. An application can provide automatic handling of
directionality based on the characters being typed, or it can support an input mode that
users invoke to switch the language and direction of text entry.

17.3.3 Other Text Entry Actions

The text cursor remains visible during text entry to indicate the locus of typed input. In
addition, the text cursor does not disappear from view as it moves from one character to
the next in a string of single-byte and multi-byte characters. If the target language is bi-
directional, an application can support multiple text cursors within a single text area, one
indicating when text can be added in the current input direction and the other marking the
last place where the direction of input changed. In contextual languages (i.e., where the
appearance of existing text can change as new characters are entered), the text insertion
point can move backward or forward as users perform text entry; in this case, the text
cursor is displayed in a manner that is consistent with the movement of the text insertion
point.

The arrow keys move the text cursor in the direction of the arrow regardless of the
direction in which text is currently being entered. DELETE deletes text in the direction
opposite to the direction in which text is being entered.

If an application is being converted to a contextual language, it needs to define how
certain keystrokes affect a compound symbol that is composed of several separate
characters. For example, an application needs to determine when DELETE cancels the
previous keystroke (i.e., removes a character) or deletes the entire symbol. In addition,
an application may need to limit the ability to insert or delete individual characters in a

User Interface Internationalization

17-10 September 2002 COE UIS v4.1

word if these actions would change neighboring characters or alter the appearance of the
word in unintended or confusing ways.

User Interface Internationalization

COE UIS v4.1 September 2002 17-11

17.4 Internationalizing User Interface Features

17.4.1 Text Expansion

When text is translated into another language, the result is often longer than the original
English. For example, the phrase “message pop-up” translates to
“Nachrichtenüberlagerrungsfenster” in German and “janela de sobreposiçao de
mensagem” in Portuguese. The increase in text length may be as much as 200 percent,
depending on the length of the original text. Some of this increase may result from the
addition of spaces that were not present in the original text. Table 17-1 lists allowances
for expansion recommended by MS Windows based on text length in English. This table
refers to the number of characters in a message, with characters in multi-byte languages
(e.g., Japanese) taking two bytes per character.

Table 17-1. Allowances for text expansion.

Length of English Text Additional Space Required

Up to 10 characters 200 percent
11 - 20 characters 100 percent
21 - 30 characters 80 percent
31 - 50 characters 60 percent
51 - 70 characters 40 percent
Over 70 characters 30 percent

Note: This table was taken from the Microsoft Windows Software Development Kit -- Additional
Windows Development Notes , as published in Software Internationalization and Localization: An
Introduction .

Translated text may require adjustments in the horizontal spacing between specific pairs
of characters. For example, in English, the characters f and i look better when displayed
closer together than other pairs of characters. The horizontal spacing algorithms used by
an application need to accommodate adjustments in the spacing of non-US characters,
including pairs of characters (e.g., æ) that may be part of an extended character set.

The height of a line of translated text may be twice the height of the text in English.
Roman-based languages may supplement the character set with diacritical marks that
extend above or below the basic symbol. In non-Roman languages, marks may be
stacked two or three high, and small versions of characters may be placed above, below,
or beside the primary symbols, causing wide variations in the height of each text line.
Because of their complexity, ideographs require more space to display the strokes within
them. For example, some complex Chinese characters may need to be displayed at least
50 percent larger than alphabetic characters in order to be readable. The minimum size
for ideographs is usually 16 x 16 pixels. Translated text may also require adjustments to
the vertical spacing between lines to ensure legibility and readability when displayed by

User Interface Internationalization

17-12 September 2002 COE UIS v4.1

an application or printed. Extended characters, and in particular those with diacritical
marks, may require additional spacing, especially when printed in upper case.

It is likely that the size and placement of controls in application windows will require
adjustment in order to accommodate text expansion following translation. Menus and
dialog windows will also need to increase in size in order to accommodate the longer
text. Similarly, more vertical space may be needed in window components such as the
title bar to accommodate larger character size, especially in languages such as Chinese,
Japanese, and Korean. Finally, the size of the text included in the label of a window icon
may need to increase to accommodate an extended character set, and the icon graphic
may also contain embedded text that needs to be translated.

Each application window needs to be checked to ensure that all of the translated text fits
properly within the window and that individual controls are positioned correctly within
each window area. For example, when column headings are translated, they may be
longer than the data they contain and need to be broken into more than one line of text.
Similarly, when text labels are translated, the placement of the associated text boxes may
be altered and require repositioning in order to be properly aligned within the window.

17.4.2 Nonlinguistic Text Features

Capitalization, punctuation, and word order. Text displayed by an application follows the
rules for capitalization, punctuation, and word order used in the target language. For
example, in German, all nouns are capitalized, regardless of their position within a phrase
or sentence. Depending on the language, quotation marks may be displayed as
“quotation”, «quotation», »quotation«, or ,,quotation.“ Interrogatory sentences in
Spanish begin with an inverted question mark and end with a question mark in normal
orientation. Adjectives precede nouns in English word order but may follow nouns in
other languages.

Hyphenation. An application performs hyphenation in a manner that is consistent with
the rules of the target language. These rules may call for changing the characters in a
word when it is hyphenated at the end of a line, or placing hyphens between individual
words when they extend beyond the end of a line. For example, in German, “drucken”
and “heißen” become “druk-ken” and “heis-sen” when hyphenated; in French, a hyphen
is added between a personal pronoun and “même” (e.g., “eux-même”) when these words
extend beyond the end of a line.

Justification. The justification routines used by an application conform to the rules of the
target language and may require some character-processing logic in order to do so. For
example, in Asian languages where spaces are not used to delimit words, line breaks can
occur anywhere within a word. However, because symbols are represented by a multi-
byte character, line breaks cannot occur within a symbol nor can punctuation be the first
character on a new line. Alternatively, languages such as Arabic and Hindi do not allow
breaks within words. In this case, the justification algorithm used by an application must

User Interface Internationalization

COE UIS v4.1 September 2002 17-13

accommodate this restriction and be able to produce justified text without excessive space
between words.

Abbreviations. The abbreviations used in US software may have different meanings in
other languages or not be used at all. For example, while # is commonly used as an
abbreviation for number, this character is not meaningful outside the US. The symbol @
means “at” in the US but “each” in the United Kingdom. The abbreviations for ordinals
are 1st, 2nd, 3rd, etc. in the US, but 1o, 2o, 3o or 1a, 2a, 3a in other languages, depending
on the gender of the subject.

Typography. If an application displays text in a Roman-based character set, it supports
the fonts (e.g., Times and Helvetica), sizes (e.g., 10-point, 12-point), and styles (e.g.,
regular, italic, bold) that are normally available in the target language. An application
also accommodates any unique typographic conventions when displaying translated text.
For example, stress in writing is indicated through the use of italics in English but by
letter spacing or boldface in European languages. In Japanese, stress is indicated by
underlining characters, putting a light gray background behind them, or writing the text in
Katakana.

Reordering sorted information. If an application presents sets of related items (e.g., in
lists, option menus) in alphabetical order, it reorders the items after translation based on a
sort sequence that is meaningful to the target audience. The most appropriate order may
vary by application and depend on the information displayed in the items. Section 17.4.6
provides additional information on sorting and collation.

17.4.3 Data Formats

An application is able to recognize and correctly handle the range of formats that are used
to express data in the target language. The labels for all data entry areas are modified to
include the appropriate unit of measurement. An application either converts the data
format to one that is familiar to users or provides the capability to display data in
alternate formats so users can select the one that is most meaningful to them. For
example, US users prefer to measure length in feet and yards while European users are
more familiar with the metric system. If the content of data entry areas is not converted
to a format that is familiar to the target audience, then the data format is included as part
of the data label. If an application supports converting to and from both millimeters and
inches, the number of digits stored is sufficient to prevent truncation errors during
conversion.

The presentation of date and time is modifiable by users so they can display this
information in the appropriate time zone (e.g., India rather than Zulu) and modify it for
other zones as needed. Numeric data is properly aligned according to the particular
numerical separators and indicators used in the target language. In addition, if an
application allows users to manipulate text, the different forms of tabulation available are
modified as needed (e.g., allow the decimal tab to work with commas rather than periods)
to accommodate the data formats used in the target language.

User Interface Internationalization

17-14 September 2002 COE UIS v4.1

Number systems and formats. While Arabic numerals (e.g., 0, 1, 2, etc.) are widely
accepted, some languages have their own number systems. In some cases (e.g., Chinese),
the symbols are substitutes for Arabic numerals, while in others (e.g., Ethiopia), there are
special characters for numbers such as 10 and 100.

When presenting numbers, a comma, period, space, and apostrophe can be used as
separators for units of thousands. In some cases, an explicit separator is not required for
numbers less than 10,000. Numbers can be grouped by thousands or ten thousands. The
period, comma, and center dot can be used as separators for decimal numbers. Positive
and negative numbers can be indicated by + and - symbols appearing either before or
after the number, and negative numbers can be enclosed in parentheses.

Measurement systems and arithmetic operations. US users are familiar with the Imperial
system of measurement that uses inches and fractions of an inch (e.g., halves, quarters,
eighths) while users outside the US rely on the metric system which measures in meters,
liters, and grams. In addition, the US relies on the Fahrenheit scale for temperature while
the rest of the world uses Celsius. Similarly, cultures vary in the manner in which certain
arithmetic operations are performed. For example, some countries have rules for
rounding numbers that differ from those used in the US. In addition, accounting rules
(e.g., to calculate compound interest) vary from locale to locale.

Currency. The comma, period, and colon can be used as separators for currency.
Currency indicators include a number of symbols (e.g., $, British pound, and the Japanese
yen), alphabetic characters (e.g., FF, SFRs, kr), and combinations (e.g., CZ$), and can be
placed at the beginning, middle, or end of the currency expression. There can be one or
no space between the currency symbol and the amount, and currency symbols can be up
to four characters in length. Most currencies (except Japan) include two digits to indicate
fractional money amounts.

Date and time. The hyphen, comma, period, space, and slash can be used as separators
for the day, month, and year, or separators can be left out altogether. In numeric date
formats, the month and day fields can be reversed, and in some cases, the year field can
come first. Month and day names can be capitalized or in lower case and can be
abbreviated using the first two or three letters or some other combination of letters.

The manner in which a date is expressed can be affected by the calendar system being
used. While dates are usually based on the Gregorian calendar, some cultures use lunar
calendars or the Jewish or Arabic calendar or can express the date based on the year of
accession of the Emperor, as in Japan. These calendars can include day names for more
than seven days, and month names for more than twelve months. Moslem countries such
as Saudi Arabia and Egypt use a calendar with 12 months but only 354 or 355 days. The
first day of the week is Sunday in the US but Monday in European countries, a difference
that affects the manner in which calendars are displayed.

User Interface Internationalization

COE UIS v4.1 September 2002 17-15

The colon, period, and space can be used as separators for hours, minutes, and seconds.
The letter h can separate hours and minutes. Both 12-hour and 24-hour notation can be
used. For 12-hour notation, a.m. or p.m. can appear after the time.

Although the world is divided into 24 standard time zones, countries have the freedom to
set their own times. For example, in South America, Surinam’s time is 30 minutes
different from that of the next zone, and Guyana’s is 45 minutes different. The same time
zone can have multiple names, and different time zones can share the same abbreviation.
Finally, countries differ in their rules concerning daylight savings time or may not use it
at all, and the hemispheres differ in when it starts and ends because the seasons are
reversed.

Addresses and telephone numbers. Addresses vary from two to six lines long and can
include any character used in the character set for a language. The house number
precedes the street name in the US and United Kingdom but follows the street name in
most other European countries. Postal codes appear in various positions and can include
alphabetic characters (e.g., an abbreviation for the country), separators (usually spaces),
and numbers (up to seven characters and numbers in length). In many countries, each
part of an address is written on a separate line; however, in South Korea, the entire
address is placed on a single line, with the specific format used varying for central cities
and local areas.

Telephone numbers can contain blanks, commas, hyphens, periods, and square brackets
as separators. Telephone numbers can be displayed in local, national, and international
formats. Local formats vary widely. National formats can have an area code in
parentheses, while international formats can drop the parentheses but add a plus sign at
the beginning of the number to indicate the country code.

17.4.4 Graphics

Icons and symbols. The icons and symbols used by an application may be unfamiliar to
users outside the US. For example, a mail application that changes a mailbox graphic to
indicate receipt of new mail may be unrecognizable in another culture where mailboxes
have a different appearance or may not be used. Certain images, colors, and numbers of
objects in a group may evoke a negative reaction in another culture so they obscure or
contradict the message they are intended to convey. As a result, the icons used in an
application may need to be modified in order to match the image or symbol to the culture
in which the application will be used.

Whenever possible, an application uses international symbols in its icons. If a new
symbol is created, it represents a basic, concrete concept because concrete icons require
less explanation than abstract ones. In addition, each new symbol needs to be compared
with existing symbols to ensure there are no conflicts. The use of stars and crosses as
part of the symbol is avoided. Text is not included in an icon graphic because it will need
to be translated and may not fit into the icon when presented in the target language.

User Interface Internationalization

17-16 September 2002 COE UIS v4.1

Drawings. An application incorporates translated text and adjusts data formats as needed
when presenting graphic information (e.g., line graphs, bar charts, flow charts). The size
of the graphics objects may need to be enlarged to accommodate the increased length of
translated text. Alternatively, application graphics can be modified to place text adjacent
to, rather than within, the object so changes in text length do not affect size of individual
objects or the overall illustration.

Graphic design conventions vary from culture to culture. For example, Japanese artists
tend to draw tables of data differently than Western artists do. As a result, an application
may require modification to accommodate these conventions.

Tactical symbology. When an application presents tactical data (e.g., in a map window),
users are able to access a variety of map features in order to customize the display to
match their preferred mode for viewing and interpreting this information. For example,
where US users are likely to display road features for navigation in urban areas, Korean
operators may prefer to see neighborhood names as key map landmarks.

Visual cues for alerting. The specific visual signals used by an application, especially for
alerting, are reviewed to ensure that they convey the desired meaning in the target culture
and that their representations within the software are not objectionable to users. Alert
and warning messages can be supplemented with icons so an application communicates
critical information in both text and graphic form.

17.4.5 Keyboard Interaction

Mnemonics and shortcut keys. When menu options are translated, any mnemonics or
shortcut keys included with the options need to be modified to reflect the translated text.
In general, the guidelines for mnemonics in languages with single-byte character sets also
apply to languages with multi-byte character sets, except for how mnemonics are
displayed. An application translated from the former to the latter can retain the
mnemonics used in the single-byte version, with the mnemonic displayed in parentheses
following the text of the menu option. If all of the characters in a menu option have been
assigned as mnemonics or if the choice consists of multi-byte characters, an application
can use another letter or keyboard character. The same mnemonic is assigned to an
option whenever it appears in a menu.

The layout of the user’s keyboard needs to be considered when selecting the key
combinations for the mnemonics and shortcut keys to assign to translated menu options.
First, keys are selected to minimize the disruption or relearning required to execute a
mnemonic or shortcut key, especially a frequently used one. Second, there are no
conflicts between the key combinations for entering accented characters (e.g., if a US
keyboard is being used) and those being used for mnemonics and shortcut keys. Finally,
some non-US keyboards contain only one ALT, located either on the left or right side of
the keyboard. The ease with which users can execute the key combination for a
mnemonic is considered if one of these keyboards is being used.

User Interface Internationalization

COE UIS v4.1 September 2002 17-17

Speed search and text search. If an application is translated into a language that contains
accents on the first letter of words, users are able to perform a speed search (see section
3.2.2.3) by typing an unaccented upper-case or lower-case letter, and the search finds
instances of both unaccented and accented first letters.

If an application uses wild card characters to perform text searches (see section 12.1.5), it
needs to determine if these characters are assigned special meaning in the target
language. If necessary, an alternate set of wild card characters is selected to eliminate
any possible confusability when an application is converted to the target language.

17.4.6 Text Manipulation

Sorting and collation. An application makes use of linguistic sort sequences to order the
contents of alphanumeric lists or to add new information to an already sorted list. In US
software, characters are usually compared according to their binary value in the code set,
with characters ordered on the basis of these values. However, variations are frequently
required to reflect linguistic conventions since the binary sequence of characters may not
match the linguistic sequence for the language. For example, variations may be needed
to handle characters with functional equivalence (e.g., Mac and Mc usually appear
together) and to address situations where a character should be ignored (e.g., re-locate
and relocate should be placed together). In addition, where US software typically
provides a single sorting algorithm to accommodate such variations, other languages
usually support multiple sort orders. As a result, an application needs to provide users
with the ability to choose a sort order that meets their needs.

Sorting rules for European languages must be able to handle extended character sets and
language-specific conventions, independent of the binary values assigned to characters.
These languages may contain letters after “z” or sort letters out of the standard alphabetic
sequence used in the US. For example, some of these languages contain double
characters that sort as one combined character, or a single character that is treated as a
double character. In Spanish, double characters such as “ch” and “ll” sort as a single
character, and in German, ß is a single character that is treated as “ss” when found in a
word. Madell, Parsons, and Abegg in Developing and Localizing International Software
provide the following examples of differences in sorting order based on ASCII and
German rules, and ASCII and Spanish rules:

 Sorted by Sorted by Sorted by Sorted by
ASCII rules German rules ASCII rules Spanish rules

Airplane Airplane chaleco cuna
Zebra ähnlich cuna chaleco
bird bird día día
car car llave loro

ähnlich Zebra loro llave
maíz maíz

User Interface Internationalization

17-18 September 2002 COE UIS v4.1

In the case of complex (i.e., multi-byte) languages, expressions can be written in a
mixture of character sets. For example, the Japanese word for “water” may be written as
a single Kanji character, as two Hiragana characters, as two Katakana characters, or as
the four-letter Romaji expression “mizu.” As a result, sorting algorithms in these
languages must be able to accept multiple character patterns as representing the same
expression. These algorithms can combine a sorting order among the character sets with
a sorting order for expressions within each set. In addition, an application may need to
provide a sort order based on a symbol feature that is not captured within the character
code. For example, Chinese expressions may need to be sorted by the numeric value of
the character as represented in the coded character set as well as by the number of strokes
required to represent the character, the radical (i.e., root) of the character, or the number
of strokes added to the radical. Finally, an application may need to implement a sort
order based on the way symbols are pronounced. In this case, each symbol may have to
be stored in both graphic and phonetic form, with the resulting sort order listing symbols
that are phonetically similar but visually different near each other.

Editing functions. Editing functions (e.g., search and replace, cut and paste, and spell
checking) can accommodate the unique features of the target language, including
instances where the appearance of a word changes when it is hyphenated, where it
appears in lower rather than upper case, or where it contains a combination character
such as æ. In contextual languages such as Thai, the characters that make up a compound
symbol may be entered in several different orders, with the appearance of the symbol
dependent on the order in which the characters are entered. In other languages (e.g.,
Greek), the appearance of a character can vary depending on its position in a word. If an
application performs string searches in these languages, it is able to recognize any of
several possible character sequences and judge them to be the same or different as
appropriate.

17.4.7 Adjustments for Bi-directional Languages

If an application is localized to a bi-directional language such as Hebrew or Arabic,
window orientation and information orientation within each window are adjusted as
appropriate for right-to-left presentation. Window appearance is the mirror image of that
in English-based windows, except that the location of the window buttons in the title bar
does not change. In addition, window placement is oriented right-to-left; i.e., a primary
window is positioned to the right and its child window(s) to the left.

With respect to information orientation in bi-directional languages, an application
complies with the style specifications in this document, except that “right” and “left” are
interchanged. However, physical right and left remain the same. As in unidirectional
languages, LEFT and RIGHT move the cursor in the arrow direction; the right and left
buttons on the pointing device behave as defined here, with left and right movement of
the pointing device moving the pointer in these directions.

With respect to information content, an application provides translations for titles,
headings, prompts, and other window controls, except for English acronyms not normally

User Interface Internationalization

COE UIS v4.1 September 2002 17-19

translated and the names of keys on the keyboard. If an application chooses to mix right-
to-left and left-to-right elements within the same window, it follows the relevant
specifications defining information display for unidirectional and bi-directional
languages.

17.4.8 Adjustments for Vertical Languages

Asian languages such as Chinese and Japanese contain a combination of horizontally and
vertically written characters, with the latter written from top to bottom and each new line
starting to the left of the previous one. If an application is converted to a vertical
language, it provides translations for titles, headings, prompts, and other window
controls, except for English acronyms not normally translated and the names of keys on
the keyboard. An application displays this information in the orientation expected by
users, complying with relevant specifications defining information display for horizontal
and vertical languages. In addition, an application supports data entry for vertically
written text using one of the text-input methods described in section 17.3 and presenting
a vertically-oriented text entry area.

17.4.9 Printing

Peripheral devices such as printers are capable of handling the character set for the target
language; i.e., the full character set can be loaded on the printer, and the printer can
produce all of the extended characters required by the language.

While the standard paper size in the US is 8.5 x 11 inches, most countries use ISO A4
size which is slightly longer and narrower than the US standard. As a result, printer
capabilities (e.g., different paper trays) may need to be adjusted in order to handle the
standard paper and envelope sizes used by the target audience, and an application may
need to be modified to handle the varying page layouts dictated by the different paper
sizes. For example, hardcoded rules regarding paper margins are removed, and users are
allowed to specify how they want text to appear and to do so using measurement units
with which they are familiar.

Adjustments made in window format to accommodate text expansion also need to
consider text presentation when the content of the window is printed. In particular, the
amount of vertical space between lines of text is sufficient to print all extended
characters, including those with accents, in both upper and lower case.

17.4.10 Internationalizing Web Applications

While it is desirable to present the content of a Web application in a user’s preferred
language, the cost to translate the entire application into each of the languages used by its
audience can be prohibitive. An alternative is to provide translations for some pages and
leave others in the original language. This hybrid approach requires that an application
decide on a default language, with users able to switch between available languages on
the home page and lower-level pages as needed. If an application cannot decide on a

User Interface Internationalization

17-20 September 2002 COE UIS v4.1

default language for its home page, it can provide a staging page where users select their
preferred language before navigating to the home page. Whenever users are presented
with a choice of languages, the list should contain the name of the language as a word
(rather than as a graphic such as a national flag), using the language’s own name for
itself.

Because it is unlikely that all of the content of a Web application will be translated into
every language it supports, the application needs to support a multilingual search
capability in order to cover the entire information space of the application. This capability
should be designed so that users enter the desired search terms in their preferred language
and the application translates the terms into the requested languages before performing
the search. This approach is preferred to having users identify the appropriate translated
synonyms in each of the languages, which may result in inaccurate or incomplete
searches.

	17. User Interface Internationalization
	17.1 Operating With Non-US Languages
	17.1.1 Character Rendering
	17.1.2 Structural Rules for Character Handling

	17.2 Text Translation
	17.2.1 Creating Internationalized English Text
	17.2.2 Translating Text and Messages
	17.2.3 Translating Documentation

	17.3 Text Input Methods
	17.3.1 Keyboards and Keyboard Input
	17.3.2 Approaches to Text Entry
	17.3.3 Other Text Entry Actions

	17.4 Internationalizing User Interface Features
	17.4.1 Text Expansion
	17.4.2 Nonlinguistic Text Features
	17.4.3 Data Formats
	17.4.4 Graphics
	17.4.5 Keyboard Interaction
	17.4.6 Text Manipulation
	17.4.7 Adjustments for Bi-directional Languages
	17.4.8 Adjustments for Vertical Languages
	17.4.9 Printing
	17.4.10 Internationalizing Web Applications

	Tables
	Table 17-1. Allowances for text expansion

